AWS SageMaker
SageMaker 可用于聊天模型和嵌入模型。使用 LMI 部署的终端节点支持聊天模型,使用 HuggingFace TEI 部署的终端节点支持嵌入模型。
以下是 SageMaker 配置示例
- YAML
- JSON
config.yaml
models:
- name: deepseek-6.7b-instruct
provider: sagemaker
model: lmi-model-deepseek-coder-xxxxxxx
region: us-west-2
roles:
- chat
- name: mxbai-embed
provider: sagemaker
model: mxbai-embed-large-v1-endpoint
roles:
- embed
config.json
{
"models": [
{
"title": "deepseek-6.7b-instruct",
"provider": "sagemaker",
"model": "lmi-model-deepseek-coder-xxxxxxx",
"region": "us-west-2"
}
],
"embeddingsProvider": {
"provider": "sagemaker",
"model": "mxbai-embed-large-v1-endpoint"
}
}
model 中的值应为您部署的 SageMaker 终端节点名称。
认证将通过 ~/.aws/credentials 文件中名为 "sagemaker" 的配置文件下的临时或长期凭证进行。
[sagemaker]
aws_access_key_id = abcdefg
aws_secret_access_key = hijklmno
aws_session_token = pqrstuvwxyz # Optional: means short term creds.